Part Number Hot Search : 
14R12 SP100111 JE172 W4011BN STZ8150A 00ETT MUX24EP R8C16
Product Description
Full Text Search
 

To Download HCPL4562 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 w
ta a D Technical Data . w w
Features
High Bandwidth, Analog/Video ee Optocouplers Sh
4U t
om .c
HCPL-4562 HCNW4562
Applications
* Video Isolation for the Following Standards/ Formats: NTSC, PAL, SECAM, S-VHS, ANALOG RGB * Low Drive Current Feedback Element in Switching Power Supplies, e.g., for ISDN Networks * A/D Converter Signal Isolation * Analog Signal Ground Isolation * High Voltage Insulation
* Wide 17 MHz (HCPL-4562) 9 MHz (HCNW4562) * High Voltage Gain[1]: 2.0 (HCPL-4562) 3.0 (HCNW4562) * Low GV Temperature Coefficient: -0.3%/C * Highly Linear at Low Drive Currents * High-Speed AlGaAs Emitter * Safety Approval UL Recognized - 3750 V rms for 1 minute (5000 V rms for 1 minute for HCPL4562#020 and HCNW4562) per UL 1577 CSA Approved IEC/EN/DIN EN 60747-5-2 Approved -VIORM = 1414 V peak for HCNW4562 * Available in 8-Pin DIP and Widebody Packages
Bandwidth[1]:
w
w
.D w
Functional Diagram
t a
S a
NC 1
e h
t e
U 4
Description
The HCPL-4562 and HCNW4562 optocouplers provide wide bandwidth isolation for analog signals. They are ideal for video isolation when combined with their application circuit (Figure 4). High linearity and low phase shift are achieved through an AlGaAs LED combined with a high speed detector. These single channel optocouplers are available in 8-Pin DIP and Widebody package configurations.
.c
m o
8 VCC 7 VB 6 VO 5 GND
ANODE 2 CATHODE 3 NC 4
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
w
w
w
.D
a
aS t
ee h
4U t
om .c
2
Selection Guide
Single Channel Packages 8-Pin DIP (300 Mil) HCPL-4562 Widebody (400 Mil) HCNW4562
Ordering Information
Specify Part Number followed by Option Number (if desired). Example: HCPL-4562#XXXX 020 = UL 5000 V rms/1 Minute Option* 300 = Gull Wing Surface Mount Option 500 = Tape and Reel Packaging Option XXXE = Lead Free Option Option data sheets are available. Contact your Agilent sales representative or authorized distributor for information.
*For HCPL-4562 only. Gull wing surface mount option applies to through hole parts only.
Remarks: The notation "#" is used for existing products, while (new) products launched since 15th July 2001 and lead free option will use "-"
Schematic
ICC 2 ANODE + VF CATHODE - 3 5 IB 7 VB GND IO 6 IF 8 VCC
VO
3
Package Outline Drawings
8-Pin DIP Package (HCPL-4562)
9.65 0.25 (0.380 0.010) TYPE NUMBER 8 7 6 5 7.62 0.25 (0.300 0.010) 6.35 0.25 (0.250 0.010)
OPTION CODE* DATE CODE
A XXXXZ YYWW RU 1 1.19 (0.047) MAX. 2 3 4
UL RECOGNITION
1.78 (0.070) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
5 TYP. 3.56 0.13 (0.140 0.005) 4.70 (0.185) MAX.
0.51 (0.020) MIN. 2.92 (0.115) MIN.
1.080 0.320 (0.043 0.013)
0.65 (0.025) MAX. 2.54 0.25 (0.100 0.010)
DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)
LAND PATTERN RECOMMENDATION 9.65 0.25 (0.380 0.010)
8 7 6 5
1.016 (0.040)
6.350 0.25 (0.250 0.010)
10.9 (0.430)
1
2
3
4
1.27 (0.050)
2.0 (0.080)
1.19 (0.047) MAX.
1.780 (0.070) MAX.
9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
3.56 0.13 (0.140 0.005)
1.080 0.320 (0.043 0.013) 0.635 0.130 2.54 (0.025 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
0.635 0.25 (0.025 0.010)
12 NOM.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
4
8-Pin Widebody DIP Package (HCNW4562)
11.15 0.15 (0.442 0.006)
8 7 6 5
11.00 MAX. (0.433) 9.00 0.15 (0.354 0.006) TYPE NUMBER DATE CODE
A HCNWXXXX YYWW
1
2
3
4
1.55 (0.061) MAX.
10.16 (0.400) TYP. 7 TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201)
3.10 (0.122) 3.90 (0.154) 2.54 (0.100) TYP. 1.78 0.15 (0.070 0.006) 0.40 (0.016) 0.56 (0.022)
0.51 (0.021) MIN.
DIMENSIONS IN MILLIMETERS (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)
11.15 0.15 (0.442 0.006)
8 7 6 5
LAND PATTERN RECOMMENDATION
9.00 0.15 (0.354 0.006)
13.56 (0.534)
1
2
3
4
1.3 (0.051) 1.55 (0.061) MAX. 12.30 0.30 (0.484 0.012) 11.00 MAX. (0.433)
2.29 (0.09)
4.00 MAX. (0.158)
1.78 0.15 (0.070 0.006) 2.54 (0.100) BSC 0.75 0.25 (0.030 0.010)
1.00 0.15 (0.039 0.006)
+ 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 7 NOM.
DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
5
Solder Reflow Temperature Profile
300
PREHEATING RATE 3C + 1C/-0.5C/SEC. REFLOW HEATING RATE 2.5C 0.5C/SEC. PEAK TEMP. 245C PEAK TEMP. 240C PEAK TEMP. 230C 2.5C 0.5C/SEC. 160C 150C 140C 3C + 1C/-0.5C 30 SEC. 30 SEC. SOLDERING TIME 200C
TEMPERATURE (C)
200
100
PREHEATING TIME 150C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE
ROOM TEMPERATURE
0
0
50
100
150
200
250
TIME (SECONDS)
Recommended Pb-Free IR Profile
TIME WITHIN 5 C of ACTUAL PEAK TEMPERATURE 20-40 SEC.
tp Tp TL 260 +0/-5 C 217 C RAMP-UP 3 C/SEC. MAX. 150 - 200 C
TEMPERATURE
Tsmax Tsmin
RAMP-DOWN 6 C/SEC. MAX.
ts PREHEAT 60 to 180 SEC. 25 t 25 C to PEAK
tL
60 to 150 SEC.
TIME NOTES: THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 C, Tsmin = 150 C
Regulatory Information
The devices contained in this data sheet have been approved by the following organizations:
UL Recognized under UL 1577, Component Recognition Program, File E55361. CSA Approved under CSA Component Acceptance Notice #5, File CA 88324.
IEC/EN/DIN EN 60747-5-2 Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01 (HCNW4562 only)
6
Insulation and Safety Related Specifications
8-Pin DIP (300 Mil) Value 7.1 Widebody (400 Mil) Value 9.6
Parameter Minimum External Air Gap (External Clearance) Minimum External Tracking (External Creepage) Minimum Internal Plastic Gap (Internal Clearance)
Symbol L(101)
Units mm
L(102)
7.4
10.0
mm
0.08
1.0
mm
Minimum Internal Tracking (Internal Creepage) Tracking Resistance (Comparative Tracking Index) Isolation Group
NA
4.0
mm
Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Measured from input terminals to output terminals, along internal cavity. DIN IEC 112/VDE 0303 Part 1
CTI
200
200
Volts
IIIa
IIIa
Material Group (DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)
Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 600 V rms for rated mains voltage 1000 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 17, Thermal Derating curve.) Case Temperature Input Current Output Power Insulation Resistance at TS, VIO = 500 V Symbol Characteristic I-IV I-III 55/85/21 2 1414 2652 Units
VIORM VPR
V V
peak
peak
VPR
2121
V
peak
VIOTM
8000
V
peak
TS IS,INPUT PS,OUTPUT RS
150 400 700 109
C mA mW
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
7
Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Average Forward Input Current Peak Forward Input Current Effective Input Current Reverse LED Input Voltage (Pin 3-2) Input Power Dissipation Average Output Current (Pin 6) Peak Output Current (Pin 6) Emitter-Base Reverse Voltage (Pin 5-7) Supply Voltage (Pin 8-5) Output Voltage (Pin 6-5) Base Current (Pin 7) Output Power Dissipation Lead Solder Temperature 1.6 mm Below Seating Plane, 10 Seconds up to Seating Plane, 10 Seconds Reflow Temperature Profile Symbol TS TA IF(avg) IF(PEAK) IF(EFF) VR PIN IO(AVG) IO(PEAK) VEBR VCC VO IB PO TLS HCPL-4562 HCNW4562 TRP Option 300 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 HCPL-4562 HCNW4562 HCNW4562 Device Min. -55 -40 Max. 125 85 12 25 18.6 40 12.9 1.8 3 40 8 16 5 30 20 5 100 260 260 mW mA mA V V V mA mW C C 2 mA rms V mA Units C C mA Note
-0.3 -0.3
See Package Outline Drawings Section
Recommended Operating Conditions
Parameter Operating Temperature Quiescent Input Current Peak Input Current Symbol TA IFQ IF(PEAK) Device HCPL-4562 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 Min. -10 Max. 70 6 10 10 17 mA Units C mA Note
8
Electrical Specifications (DC)
TA = 25C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified. Parameter Base Photo Current IPB Temperature Coefficient IPB Nonlinearity Input Forward Voltage Input Reverse Breakdown Voltage Transistor Current Gain Current Transfer Ratio DC Output Voltage VF BVR Symbol IPB HCPL-4562 IPB / T HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 1.1 1.2 1.8 3 60 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 Device Min. Typ.* Max. Units 13 31 19.2 -0.3 65 A %/C Test Conditions IF = 10 mA VPB 5 V IF = 6 mA 2 mA < IF < 10 mA, VPB 5 V 2 mA < IF < 10 mA 6 mA < IF < 14 mA IF = 5 mA IF = 10 mA IR = 10 A IR = 100 A IC = 1 mA, VCE = 1.25 V % V VCE = 1.25 V, VPB 5 V GV = 2, VCC = 9 V 8, 9 4, 15 4 Fig. Note 2, 6 2
0.25 0.15 1.3 1.6 5 1.6 1.8
% V V
2, 6 5
3
hFE CTR VOUT
160 45 52 4.25 5.0
9
Small Signal Characteristics (AC)
TA = 25C, I F = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified.
Parameter Voltage Gain GV Temperature Coefficient Base Photo Current Variation -3 dB Frequency (iPB) -3 dB Frequency (GV) Gain Variation Symbol Device Min. Typ.* Max. Units 0.8 2.0 3.0 -0.3 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 6 6 1.1 0.36 15 13 17 9 1.1 0.54 0.8 1.5 1.15 2.27 1.0 0.9 1 0.6 2.5 0.75 950 HCPL-4562 HCNW4562 122 119 3.0 3.0 4.2 Test Conditions VIN = 1 VP-P %/C VIN = 1 VP-P , fREF = 0.1 MHz -dB VIN = 1 VP-P , fREF = 0.1 MHz Fig. 1 1, 11 3, 10, 12 3, 10, 12 1, 11 7 7 Note 6 GV HCPL-4562 (0.1 MHz) HCNW4562 GV /T i PB (6 MHz) iPB (-3 dB) GV (-3 dB) GV (6 MHz)
MHz VIN = 1 VP-P , fREF = 0.1 MHz MHz VIN = 1 VP-P , fREF = 0.1 MHz -dB
GV HCPL-4562 (10 MHz) HCNW4562 Differential Gain at f = 3.58 MHz Differential Phase at f = 3.58 MHz Total Harmonic Distortion Output Noise Voltage Isolation Mode Rejection Ratio THD VO(noise) IMRR HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 HCPL-4562 HCNW4562
-dB %
TA = 25C V = 1 VP-P , 1, 11 IN fREF = 0.1 MHz TA = -10C TA = 70C VIN = 1 VP-P , fREF = 0.1 MHz IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA 3, 7 8
deg. IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA % VIN = 1 VP-P , f = 3.58 MHz, GV = 2
3, 7
9
4 1 14
10
V rms 10 Hz to 10 MHz dB f = 120 Hz, GV = 2
11
10
Package Characteristics
All Typicals at TA = 25C Parameter Input-Output Momentary Withstand Voltage* Input-Output Resistance Input-Output Capacitance Sym. VISO Device HCPL-4562 HCNW4562 HCPL-4562 (Option 020) HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 Min. 3750 5000 5000 Typ. Max. Units V rms Test Conditions RH 50%, t = 1 min., TA = 25C VI-O = 500 Vdc TA = 25C TA = 100C f = 1 MHz Fig. Note 5, 12 5, 13 5, 13 5
RI-O
1012 1011
1012 1013 0.6 0.5
CI-O
pF 0.6
5
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.
Notes: 1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-4562), IFQ = 10 mA (HCNW4562). 2. Derate linearly above 70C free-air temperature at a rate of 2.0 mW/C (HCPL-4562). 3. Maximum variation from the best fit line of IPB vs. I F expressed as a percentage of the peak-to-peak full scale output. 4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO , to the forward LED input current, IF, times 100%. 5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. 6. Flat-band, small-signal voltage gain. 7. The frequency at which the gain is 3 dB below the flat-band gain.
8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD of the isolated video circuit is measured using a 2.6 k load in series with the 50 input impedance of the spectrum analyzer. 11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler's ability to reject signals or noise that may exist between input and output terminals, is defined by 20 log10 [(VOUT /VIN)/(VOUT /VIM)],
where VIM is the isolation mode voltage signal. 12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage detection current limit, II-O 5 A). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable. 13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second (leakage detection current limit, II-O 5 A). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable.
11
162 (HCPL-4562) 90.9 (HCNW4562)
Figure 1. Gain and Bandwidth Test Circuit.
162 (HCPL-4562) 90.9 (HCNW4562)
Figure 2. Base Photo Current Test Circuit.
Figure 3. Base Photo Current Frequency Response Test Circuit.
Figure 4. Recommended Isolated Video Interface Circuit.
12
IF - INPUT FORWARD VOLTAGE - mA
100 IF + VF - TA = 70 C 1.0
HCPL-4562
HCNW4562
10
TA = 25 C TA = -10 C 0.1
0.01 1.0
1.1
1.2
1.3
1.4
1.5
VF - FORWARD VOLTAGE - V
Figure 5. Input Current vs. Forward Voltage.
80
IPB - BASE PHOTO CURRENT - A
HCPL-4562
HCNW4562
70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 TA = 25 C VPB > 5 V
IF - INPUT CURRENT - mA
Figure 6. Base Photo Current vs. Input Current.
HCPL-4562
1.02 2
SMALL-SIGNAL PHASE - DEGREES
HCNW4562
1
SMALL-SIGNAL GAIN
1 PHASE
0.98
0
0.96
0.94
NORMALIZED IF = 6 mA f = 3.58 MHz TA = 25 C SEE FIG. 3 0 2 4 6
GAIN
-1
-2
0.92
-3 8 10 12 14 16 18 20
IF - INPUT CURRENT - mA
Figure 7. Small-Signal Response vs. Input Current.
13
NORMALIZED CURRENT TRANSFER RATIO
1.04 1.02 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 -10 0 10
HCPL-4562
HCNW4562
NORMALIZED TA = 25 C IF = 6.0 mA VCE = 1.25 V VPB > 5 V
20
30
40
50
60
70
T - TEMPERATURE - C
Figure 8. Current Transfer Ratio vs. Temperature.
CTR - NORMALIZED CURRENT TRANSFER RATIO
1.10 1.00 0.90
HCPL-4562
HCNW4562
VCE = 5.0 V
VCE = 1.25 V 0.80 0.70 0.60 0.50 NORMALIZED TA = 25 C IF = 6 mA VCE = 1.25 V VPB > 5 V 0 2 4 6
VCE = 0.4 V
8 10 12 14 16 18 20
IF - INPUT CURRENT - mA
Figure 9. Current Transfer Ratio vs. Input Current.
iPB - BASE PHOTO CURRENT VARIATION - dB
-0.9 -1.1 -1.3 -1.5 -1.7
HCPL-4562
HCNW4562
FREQUENCY = 6 MHz
FREQUENCY = 10 MHz -1.9 -2.1 -2.3 -2.5 -2.7 1 2 3 4 5 6 7 8 9 10 11 12 TA = 25 C FREF = 0.1 MHz
IFQ - QUIESCENT INPUT CURRENT - mA
Figure 10. Base Photo Current Variation vs. Bias Conditions.
14
3
NORMALIZED VOLTAGE GAIN - dB
HCPL-4562
HCNW4562
2 1 0 -1 -2 -3 -4 -5 -6 -7 0.01 0.1 1.0 10 100 1000 10,000 100,000 NORMALIZED TA = 25 C f = 0.1 MHz TA = 70 C TA = -10 C TA = 25 C
f - FREQUENCY - KHz
Figure 11. Normalized Voltage Gain vs. Frequency.
NORMALIZED BASE PHOTO CURRENT - dB
0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 0.01 0.1 1.0
HCPL-4562
HCNW4562
NORMALIZED TA = 25 C f = 0.1 MHz
10 100 1000 10,000 100,000
f - FREQUENCY - KHz
Figure 12. Normalized Base Photo Current vs. Frequency.
0 -25
- PHASE - DEGREES
HCPL-4562 IPB PHASE SEE FIGURE 3
HCNW4562
-50 -75 -100 -125 -150 -175 -200 -225 -250 0 2 4 6 8 10 12 14 16 18 20 VIDEO INTERFACE CIRCUIT PHASE SEE FIGURE 4 TA = 25 C
f - FREQUENCY - MHz
Figure 13. Phase vs. Frequency.
15
IMRR - ISOLATION MODE REJECTION RATIO - dB
150
HCPL-4562 TA = 25 C
HCNW4562
120 -20 dB/DECADE SLOPE 90
60 Gv vOUT/vIM 100 1000 10,000
30
IMRR = 20 LOG10
0 0.01
0.1
1.0
10
f - FREQUENCY - KHz
Figure 14. Isolation Mode Rejection Ratio vs. Frequency.
6.0
VO - DC OUTPUT VOLTAGE - V
HCPL-4562
HCNW4562
5.5 5.0 4.5 4.0 3.5 3.0 50 100 150 200 250 300 350 400 450 hFE - TRANSISTOR CURRENT GAIN
Figure 15. DC Output Voltage vs. Transistor Current Gain.
OUTPUT POWER - PS, INPUT CURRENT - IS
VCC R9 Q4 Q3 R11 R10 R12 Q5 VOUT LOW IMPEDANCE LOAD ICQ4 = 2 mA ADDITIONAL BUFFER STAGE
1000 900 800 700 600 500 400 300 200 100 0 0 25 50
HCNW4562 PS (mW) IS (mA)
75
100 125 150 175
TS - CASE TEMPERATURE - C
Figure 16. Output Buffer Stage for Low Impedance Loads.
Figure 17. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/ DIN EN 60747-5-2.
Conversion from HCPL-4562 to HCNW4562
In order to obtain similar circuit performance when converting from the HCPL-4562 to the HCNW4562, it is recommended to increase the Quiescent Input Current, IFQ, from 6 mA to 10 mA. If the application circuit in Figure 4 is used, then potentiometer R4 should be adjusted appropriately.
Figure 15 shows the dependency of the DC output voltage on hFEX. For 9 V < VCC that VO ICQ4 --- Q4 R 11 < 12 V, select the value of R11 such 4.25 V ------ 9.0 mA 470 (8)
Design Considerations of the Application Circuit
The application circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562/HCNW4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology, and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance. To use the circuit, first select R1 to set VE for the desired LED quiescent current by: VE GV VE R10 IFQ = -- ------------- R4 (IPB/IF) R7R9 (1)
The voltage gain of the second stage (Q3) is approximately equal to: R9 1 --- * ------------------------- R10 1 + s R C 1 9 CQ 3 + --------- 2 R11 fT4 4 Increasing R11 (R11 includes the parallel combination of R11 and the load impedance) or reducing R9 (keeping R 9 /R10 ratio constant) will improve the bandwidth.
(9)
If it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage (Q5 in Figure 16), in which case R11 can be increased to set ICQ4 2 mA. Finally, adjust R4 to achieve the desired voltage gain. VOUT IPB R7R9 GV ---- ---- ------ VIN IF R4R10 (10)
For a constant value VINp-p, the circuit topology (adjusting the gain with R4) preserves linearity by keeping the modulation factor (MF) dependent only on VE. iFp-p VIN/R4 p-p iFp-p iPBp-p VINp-p p-p p-p p-p ---- ----- = ----- IFQ IPBQ VE Modulation i F(p-p) VINp-p p-p (p-p) Factor (MF): ----- = ----- 2 IFQ 2 VE (2) (3)
(4)
For a given GV, VE, and VCC, DC output voltage will vary only with hFEX. R9 VO = VCC - VBE4 - --- [VBEX - (I PBQ - IBXQ) R7] R 10 Where: GV VER10 IPBQ -------- R7 R9 and, VCC - 2 VBE IBXQ ---------- R 6 hFEX (7) (6) (5)
IPB where typically ---- = 0.0032 IF Definition: GV = Voltage Gain IFQ = Quiescent LED forward current iFp-p = Peak-to-peak small signal LED forward current VINp-p = Peak-to-peak small signal input voltage iPBp-p = Peak-to-peak small signal base photo current IPBQ = Quiescent base photo current VBEX = Base-Emitter voltage of HCPL-4562/ HCNW4562 transistor IBXQ = Quiescent base current of HCPL-4562/ HCNW4562 transistor hFEX = Current Gain (IC/IB ) of HCPL-4562/ HCNW4562 transistor VE = Voltage across emitter degeneration resistor R4 fT4 = Unity gain frequency of Q5 CCQ = Effective capacitance from collector of Q3 3 to ground
www.agilent.com/semiconductors
E-mail: SemiconductorSupport@agilent.com Data subject to change. Copyright (c) 2005 Agilent Technologies, Inc. Obsoletes 5989-0287EN March 1, 2005 5989-2158EN


▲Up To Search▲   

 
Price & Availability of HCPL4562

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X